ARTIFICIAL INTELLIGENCE

Hill Climbing / Gradient Descent

Hill Climbing / Gradient Descent

The basic idea of hill climbing is simple: at each current state we select a transition, evaluate the resulting state, and if the resulting state is an improvement we move there, otherwise we try a new transition from where we are.

We repeat this until we reach a goal state, or have no more transitions to try. The transitions explored can be selected at random, or according to some problem specific heuristics.

In some cases, it is possible to define evaluation functions such that we can compute the gradients with respect to the possible transitions, and thus compute which transition direction to take to produce the best improvement in the evaluation function.

Following the evaluation gradients in this way is known as gradient descent.
In neural networks, for example, we can define the total error of the output activations as a function of the connection weights, and compute the gradients of how the error changes as we change the weights. By changing the weights in small steps against those gradients, we systematically minimize the network’s output errors.

Team Educate

About Author

Leave a comment

Your email address will not be published. Required fields are marked *

You may also like

List the various type of agent types
ARTIFICIAL INTELLIGENCE

List the various type of agent types

In artificial intelligence, agents can be categorized into several types based on their characteristics and capabilities. Here are some of
ARTIFICIAL INTELLIGENCE

What are the factors that a rational agent should depend on at any given time?

A rational agent should consider several key factors when making decisions at any given time: Perceptual Input: The current information