ARTIFICIAL INTELLIGENCE

Natural Language Processing

Hill Climbing / Gradient Descent

Developing programs to understand natural language is important in AI because a natural form of communication with systems is essential for user acceptance. One of the most critical tests for intelligent behavior is the ability to communicate effectively. This was the test proposed by Alan Turing. AI programs must be able to communicate with their human counterparts in a natural way, and natural language is one of the most important mediums for that purpose.

A program understands a natural language if it behaves by taking a correct or acceptable action in response to the input. For example, we say a child demonstrates understanding if it responds with the correct answer to a question. The action taken need not be the external response. It may be the creation of some internal data structures. The structures created should be meaningful and correctly interact with the world model representation held by the program.

Natural languages are the languages used by humans for communication (among other functions). They are distinctly different from formal languages, such as C++, Java, and PROLOG. One of the main differences, which we will examine in some detail in this chapter, is that natural languages are ambiguous, meaning that a given sentence can have more than one possible meaning, and in some cases the correct meaning can be very hard to determine. Formal languages are almost always designed to ensure that ambiguity cannot occur. Hence, a given program written in C++ can have only one interpretation. This is clearly desirable because otherwise the computer would have to make an arbitrary decision as to which interpretation to work

with. It is becoming increasingly important for computers to be able to understand natural languages. Telephone systems are now widespread that are able to understand a narrow range of commands and questions to assist callers to large call centers, without needing to use human resources. Additionally, the quantity of unstructured textual data that exists in the world (and in particular, on the Internet) has reached unmanageable proportions. For humans to search through these data using traditional techniques such as Boolean queries or the database query language SQL is impractical.

The idea that people should be able to pose questions in their own language, or something similar to it, is an increasingly popular one. Of course, English is not the only natural language. A great deal of research in natural language processing and information retrieval is carried out in English, but many human languages differ enormously from English. Languages such as Chinese, Finnish, and Navajo have almost nothing in common with English (although of course Finnish uses the same alphabet). Hence, a system that can work with one human language cannot necessarily deal with any other human language. In this section we will explore two main topics. First, we will examine natural language processing, which is a collection of techniques used to enable computers to “understand” human language.


In general, they are concerned with extracting grammatical information as well as meaning from human utterances but they are also concerned with understanding those utterances, and performing useful tasks as a result. Two of the earliest goals of natural language processing were automated translation (which is explored in this chapter) and database access. The idea here was that if a user wanted to find some information from a database, it would make much more sense if he or she could query the database in her language, rather than needing to learn a new formal language such as SQL. Information retrieval is a collection of techniques used to try to match a query (or a command) to a set of documents from an existing corpus of documents. Systems such as the search engines that we use to find data on the Internet use information retrieval (albeit of a fairly simple nature).

Overview of linguistics In dealing with natural language, a computer system needs to be able to process and manipulate language at a number of levels.

  • Phonology. This is needed only if the computer is required to understand spoken language. Phonology is the study of the sounds that make up words and is used to identify words from sounds. We will explore this in a little more detail later, when we look at the ways in which computers can understand speech.
  • Morphology. This is the first stage of analysis that is applied to words, once they have been identified from speech, or input into the system. Morphology looks at the ways in which words break down into components and how that affects their grammatical status. For example, the letter “s” on the end of a word can often either indicate that it is a plural noun or a third-person present-tense verb.
  • Syntax. This stage involves applying the rules of the grammar from the language being used. Syntax determines the role of each word in a sentence and, thus, enables a computer system to convert sentences into a structure that can be more easily manipulated.
    • Semantics. This involves the examination of the meaning of words and sentences. As we will see, it is possible for a sentence to be syntactically correct but to be semantically meaningless. Conversely, it is desirable that a computer system be able to understand sentences with incorrect syntax but that still convey useful information semantically.
    • Pragmatics. This is the application of human-like understanding to sentences and discourse to determine meanings that are not immediately clear from the semantics. For example, if someone says, “Can you tell me the time?”, most people know that “yes” is not a suitable answer. Pragmatics enables a computer system to give a sensible answer to questions like this.

    In addition to these levels of analysis, natural language processing systems must apply some kind of world knowledge. In most real-world systems, this world knowledge is limited to a specific domain (e.g., a system might have detailed knowledge about the Blocks World and be able to answer questions about this world). The ultimate goal of natural language processing would be to have a system with enough world knowledge to be able to engage a human in discussion on any subject. This goal is still a long way off.

Team Educate

About Author

Leave a comment

Your email address will not be published. Required fields are marked *

You may also like

List the various type of agent types
ARTIFICIAL INTELLIGENCE

List the various type of agent types

In artificial intelligence, agents can be categorized into several types based on their characteristics and capabilities. Here are some of
ARTIFICIAL INTELLIGENCE

What are the factors that a rational agent should depend on at any given time?

A rational agent should consider several key factors when making decisions at any given time: Perceptual Input: The current information